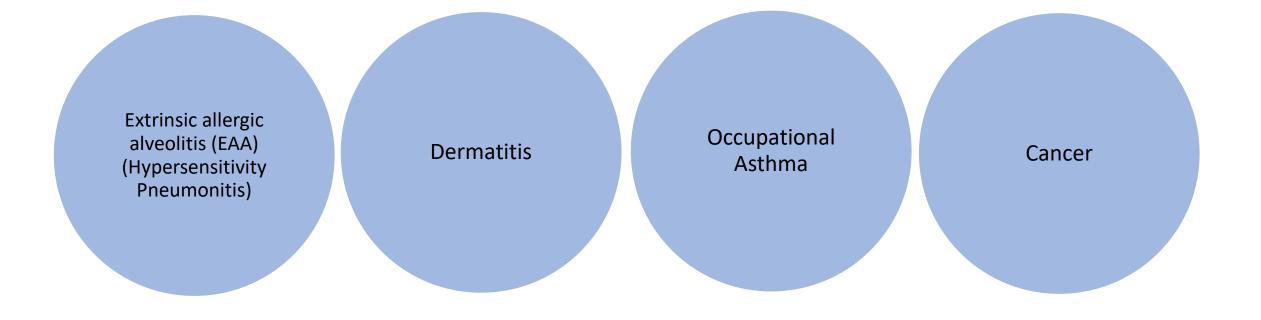
Diseases associated with Metalworking fluid (MWF) exposure

Nilesh Dhokia MChem (Hons) CertOH LFOH



Topics Covered

- Potential causative agents of disease associated with MWF exposure
- Diseases associated with MWF exposure
- History of respiratory disease associated with MWF
- Dermatitis
- Extrinsic Allergic Alveolitis (EAA)/Hypersensitivity Pneumonitis
- Occupational Asthma
- Cancer & MWF Exposure
- Factors increasing the risk of respiratory disease
- Case study
- Conclusions

Pragma+Associates

Diseases Associated with MWF

Pragma+Associates

Potential Causative Agents

- It should be noted that there is no clear causative agent associated with MWF induced Extrinsic Allergic Alveolitis (EAA); also known as Hypersensitivity Pneumonitis (HP).
- Disease is thought to occur via exposure to MWF which has been poorly maintained and as a consequence biologically contaminated
- There are many potential causative agents of disease, a few of which are listed below:
 - 1. Bacteria and fungi
 - 2. Endotoxins
 - 3. Mycobacteria

Pragma+Associates Health & safety expertise you can trust

Biological Contaminants

- Pseudomonas is the most common genus of bacteria found in MWF.
- All species of the pseudomonas genus are gram negative and are able to produce endotoxins with adverse health effects.
- Mycobacteria, which include *M.chelonae*, *M.immunogenum* and *M. avium* are common in MWF's.
- Mycobacteria are opportunistic pathogens and can cause EAA in people who are exposed to MWF aerosol.
- Fungi, both mould and yeast are commonly occurring in MWF.
- Fungi are associated with EEA, Occupational Asthma (OA) and other allergies.

Biological Contaminants

- High water content, minerals, hydrocarbons and other organic substances i.e. nitrate and phosphates helps microorganisms to grow in MWF (Cyproski et al 2007).
- Bacteria and fungi are commonly detected in used MWF. The type and quantity of microorganisms may vary considerably (Gilbert et al 2010; Lodders & Kampfer 2012).
- Some microorganisms may be pathogenic to humans (Perkins & Angenent 2010).
- Some groups are thought to express antigens causative in the pathogenesis of EEA & OA

Mycobacterial Contamination

- Non-tuberculous mycobacteria (NTM) are generally found in a variety of water sources that include fresh and potable sources (Nishiuchi et al 2017)
- MWF associated mycobacteria have been implicated in the development of EAA. (Khan, Selvaraju & Yadav 2005)
- Mycobacteria are hydrophobic and regularly form biofilms on the surfaces of machining tools.
- Fox et al 1999 conducted a case-control investigation of 34 reported cases of clinically diagnosed EAA amongst machine workers in the UK

Endotoxins

- Endotoxins have been implicated in the development of respiratory symptoms via exposure to MWF mist.
- They are components of gram negative bacterial cell walls, that are released once a cell dies, or during their growth and division (Gorbet & Sefton 2005).
- Some of the reported respiratory symptoms in machinists such as cough, bronchitis and fever are consistent with the effects associated with endotoxins (Liebers et al 2008).
- The increased mobility of endotoxins, in addition to their small size, increases their surface area, thus making them readily inhalable (Thorne et al 2006).

Endotoxins

- Epidemiological studies have attempted to determine the role of endotoxins in EAA and OA.
- Lim et al 2005 demonstrated significant effects in mice after inhalation of MWF aerosols spiked with endotoxins at 10mgm⁻³ for 6 hours a day, 3 days a week for 3 weeks.
- Results suggested that lung inflammation may be immediately induced by exposure to endotoxins in MWF.

Diseases Associated with MWF Exposure

- Occupational Asthma (OA)
- Extrinsic Allergic Alveolitis (EAA) (Hypersensitivity Pneumonitis)
- Dermatitis
- Chronic bronchitis
- Impaired lung function
- Respiratory tract infection

Pragma+Associates

Dermatitis

- Inflammation of the skin is a common condition seen in machinists (Barber et al 2016).
- Irritant reaction to the constant wetting of he operator's skin from splashes and spray of MWF from the machine.
- Factors such as alkaline pH and bacterial contamination have been established as the cause of dermatitis (Barber et al 2016)
- Reducing the risk of dermal exposure involves wearing nitrile gloves and improving hygiene in the workplace (COSHH MW2)
- Between 1996 2007, 666 cases of contact dermatitis reported to EPIDERM
- Between 1997- 2007, occupational physicians reported 92 actual cases of work-related contact dermatitis attributed to MWF.
- Frequently reported industries were manufacture of metal components, motor vehicles and trailers.
- Dermatitis is reportable through RIDDOR; however, this is not the case for HP.

History of Disease Associated with MWF

- In 1983, Hendy et al described one of the first reported cases of Occupational Asthma secondary to MWF in the UK.
- In 1995, Bernstein et al first described the potential of MWF to cause EAA. They reported a case series of 6 workers from an automobile manufacturing site.
- In 1998, Robertson et al wrote a case series of 25 patients occupationally exposed to MWFs and who had been referred to an occupational respiratory clinic with work-related asthmatic symptoms.

Extrinsic Allergic Alveolitis (EAA)

- Also referred to as hypersensitivity pneumonitis (HP).
- First described in the early 20th century in farmers exposed to mouldy hay or straw (Farmer's Lung).
- EAA can be described as an allergic reaction that occurs in the gas exchange region of the lungs (alveoli).
- Can be acute or chronic.
- Results in shortness of breath, cough and flu-like symptoms.
- For acute-EAA, symptoms can develop within 6 8 hours of exposure to high concentrations of the antigen.

Extrinsic Allergic Alveolitis (EAA)

- OHP cases in MWF machinists have steadily increased in the UK and other countries in the last few decades (Barber et al 2016).
- However, exposure to MWF is now considered the most commonly suspected cause of EAA (SWORD).
- EAA has been a prescribed disease since 1964 for Farmer's lung.
- Barber et al noted that workers exposed to MWF are at risk of developing EAA, OA and bronchitis.

Hypersensitivity Pneumonitis (HP)

Characteristics of hypersensitivity pneumonitis diagnosed by interstitial and occupational lung disease multi-disciplinary team consensus

Gareth I. Walters^{a,b,*}, Justin M. Mokhlis^a, Vicky C. Moore^a, Alastair S. Robertson^{a,b}, Geraldine A. Burge^a, Parminder S. Bhomra^a, P. Sherwood Burge^{a,b}

^a Birmingham Regional NHS Occupational Lung Disease Service, University Hospitals Birmingham NHS Foundation Trust, Birmingham Chest Clinic, 151 Great Charles Street, Queensway, Birmingham, B3 3HX, UK

^b Occupational and Environmental Medicine, Institute of Clinical Sciences, University of Birmingham, UK

Walters et al June 2019

- Retrospective cross-sectional study, patient data was collected for all 206 cases of HP diagnosed within UK-based regional NHS interstitial and occupational lung disease service between 2002-2017.
- There were 206 cases in total comprising 125 (61%) definite HP & 81 (39%) probable HP.
- MWF identified as causative agent for 36 cases (17%).
- Workers presented with more acute/subacute features and less fibrosis in CT.
- MWF workers often develop HP that is initially mistaken for sarcoidosis. It is therefore important to identify the aetiologic agent in these cases.
- Refuse work has been identified as an emerging cause of HP.

Occupational Asthma (OA)

- Characterised by variable airflow obstruction, airway hyper-responsiveness and inflammation attributable to exposure to workplace hazards.
- Symptoms include episodes of coughing, wheezing, chest tightness and shortness of breath.
- Symptoms typically worsen at work and reduce away from work.
- There have been reports of OA described in machine operators after exposure to a number of MWF components (Robertson et al 1998; Malo 2005; Suuronen et al 2007).
- However, diagnosis of OA has been based on reports of asthma-like symptoms and only a few have included clinical investigations (Hannu et al 2013).

Occupational Asthma (OA)

- In 2019, there were an estimated 198 new cases of OA reported by doctors participating in the SWORD scheme within the THOR network.
- Statistical analysis suggest an increase in the rate of new cases per year over recent years up to 2019.
- The overall occupational asthma incidence was 0.56 cases per 100,000 workers per years during the period, 2017 – 2019 in the UK
- For machine operatives' 2.1 per 100,000 (higher than the average for all occupations)
- It is estimated that OA accounts for somewhere in the region of 9-16% of all new adult cases of asthma, making it the most frequently reported work-related airway disease in Britain.
- Occupational rhinitis and OA commonly occur together especially with high molecular weight sensitisers.

Pragma+Associates Health & safety expertise you can trust

MWF & Cancer Risk

- Potential carcinogens in MWF include, PAHs, formaldehyde, nitrosamines, hydrocarbons, chlorinated paraffins & aliphatic amines.
- NIOSH conducted a comprehensive review of epidemiological studies that examined association between MWF and cancer.
- Substantial evidence was found for an increased risk of cancer at several sites (larynx, rectum, pancreas, skin, scrotum and bladder).
- Changes in MWF composition over several decades may not be sufficient to eliminate the cancer risks associated with MWF exposure.
- Therefore, a reduction in airborne MWF exposures are key to controlling the risk.

MWF & Cancer Risk

- IIAC identified bladder cancer and work involving exposure to mineral oils as a potential topic for review.
- In 2012, IARC classified untreated or mildly treated mineral oils as Group 1 (Established) human carcinogen.
- The Council's Research Working Group conducted a literature review focussing on research reports on bladder cancer and mineral oils.
- Account was also taken of two key reviews; Calvert et al and Tolbert.
- Overall, a number of published studies have shown excess risks of bladder cancer in workers exposed to cutting and lubricating oils and in machinists.
- Calvert et al concluded that there is substantial evidence for an increased of cancer at serval sites including the bladder.
- Calvert et al reported a relative risk of 3.1 for machine tool operators with increased duration of exposure.
- Tolbert states a number of bladder cancer case-control studies have noted an association with work as a machinist.
- Hours et al found an elevated odds ratio (OR) of 2.6 for bladder cancer cases exposed to cutting fluids.
- Friesen et al concluded that increased bladder cancer risk was associated with straight metalworking fluids but not soluble or synthetic.
- Overall, these studies and others indicate a clear evidence that there is an increased risk of bladder cancer arising from occupational exposure to mineral oils; however, the relative risks are not consistently greater than doubled.

Factors increasing the risk of respiratory disease

- Physical dispersion as spray droplets and mist due to the rotation of the tools and work pieces, particularly as the rotational speed in increased.
- Splatter & atomisation induced by the pressurised delivery of the MWF above the rotating cutting head of the machine (Schwarz et al 2015)
- Increased temperature of the lubricant at high machining rotational cutting speeds resulting in the evaporation of the water phase of the MWF.
- Wang et al 2005 demonstrated that increased microbial contamination of MWF doubled the concentration of mist.

Case study

- 45 year old man presented with 1 year history of cough, shortness of breath and fatigue.
- Non-smoker, no pets, no reported episodes of water damage or mould at his home.
- Worked at a school as a machine shop teacher.
- Symptoms showed mild improvement over the summer holidays
- Thoracoscopic biopsies were consistent with HP
- MWF used was over a year old.
- Air samples did not detect MWF in the school machine shop air.
- Culture of the MWF showed profuse growth of Pseudomonas

Conclusion

- The MWF market size in the UK is increasing with 390M litres in 2021 with a predicted CAGR of 2.08% equating 432M litres in 2026.
- This suggests an increase in the number of workers potentially exposed to MWF. MWFs can cause Extrinsic Allergic Alveolitis (EAA), Occupational Asthma (OA), Dermatitis and other conditions.
- The general awareness of the potential causative agents for respiratory disease relating to MWF exposure needs to improved.
- An emphasis on management of MWF should be prioritised as a form of disease prevention.
- Training with regard to potential causative agents related types of disease needs to established amongst duty holders.
- Diagnosis of HP and occupational asthma appears to be challenging and thus, causation cannot be established in some cases.
- Reporting schemes in the UK (SWORD) between 1996 2015 have illustrated that MWF is the most reported causative agent relating to hypersensitivity pneumonitis.
- Many ingredients in current MWF remain from earlier formulations, it is therefore reasonable to assume that some MWF carcinogenicity persists today.
- There is a vital role of primary prevention preventing exposures before they cause disease.

Pragma+Associates Health & safety expertise you can trust

Thank You

Pragma+Associates